On 2D Euler equations. I. On the energy–Casimir stabilities and the spectra for linearized 2D Euler equations
- 1 February 2000
- journal article
- Published by AIP Publishing in Journal of Mathematical Physics
- Vol. 41 (2) , 728-758
- https://doi.org/10.1063/1.533176
Abstract
In this paper, we study a linearized two-dimensional Euler equation. This equation decouples into infinitely many invariant subsystems. Each invariant subsystem is shown to be a linear Hamiltonian system of infinite dimensions. Another important invariant besides the Hamiltonian for each invariant subsystem is found, and is utilized to prove an ``unstable disk theorem'' through a simple Energy-Casimir argument. The eigenvalues of the linear Hamiltonian system are of four types: real pairs ($c,-c$), purely imaginary pairs ($id,-id$), quadruples ($\pm c\pm id$), and zero eigenvalues. The eigenvalues are computed through continued fractions. The spectral equation for each invariant subsystem is a Poincar\'{e}-type difference equation, i.e. it can be represented as the spectral equation of an infinite matrix operator, and the infinite matrix operator is a sum of a constant-coefficient infinite matrix operator and a compact infinite matrix operator. We have obtained a complete spectral theoryKeywords
All Related Versions
This publication has 7 references indexed in Scilit:
- Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquidPublished by Elsevier ,2003
- Nonlinear stability of fluid and plasma equilibriaPublished by Elsevier ,2002
- Decaying, two-dimensional, Navier-Stokes turbulence at very long timesPhysica D: Nonlinear Phenomena, 1991
- Statistical equilibrium states for two-dimensional flowsJournal of Fluid Mechanics, 1991
- Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaitsAnnales de l'institut Fourier, 1966
- Sur les maxima des formes bilinéaires et sur les fonctionnelles linéairesActa Mathematica, 1926
- Über die Poincarésche lineare Differenzengleichung.Journal für die reine und angewandte Mathematik (Crelles Journal), 1910