Abstract
As dog red blood cells are shrunken in vitro, their sodium permeability increases progressively. Some new features of this volume-responsive transport process are described. Retardation of sodium movements in shrunken cells occurs when chloride is replaced by the more conductive anions: nitrate or thiocyanate. Micromolar concentrations of amiloride or quinidine inhibit the increment of sodium flux associated with a reduction in cell volume. In the presence of a large outwardly directed sodium gradient, dog red blood cells can progressively alkalinize the medium in which they are suspended. This pH change is stimulated by cell shrinkage, reversed by cell swelling, retarded when chloride is replaced by nitrate or thiocyanate, and inhibited by micromolar concentrations of amiloride or quinidine. The similarities between the shrinkage-associated sodium flux and the alkalinization phenomenon suggest that the mechanism responsible for increased sodium permeability in shrunken cells can be made to operate as a sodium-hydrogen exchanger.