Presynaptic membrane potential affects transmitter release in an identified neuron in Aplysia by modulating the Ca 2+ and K + currents
- 1 January 1980
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 77 (1) , 629-633
- https://doi.org/10.1073/pnas.77.1.629
Abstract
We have examined the relationships between the modulation of transmitter release and of specific ionic currents by membrane potential in the cholinergic interneuron L10 of the abdominal ganglion of Aplysia californica . The presynaptic cell body was voltage-clamped under various pharmacological conditions and transmitter release from the terminals was assayed simultaneously by recording the synaptic potentials in the postsynaptic cell. When cell L10 was voltage-clamped from a holding potential of -60 mV in the presence of tetrodotoxin, graded transmitter release was evoked by depolarizing command pulses in the membrane voltage range (-35 mV to + 10 mV) in which the Ca 2+ current was also increasing. Depolarizing the holding potential of L10 results in increased transmitter output. Two ionic mechanisms contribute to this form of plasticity. First, depolarization inactivates some K + channels so that depolarizing command pulses recruit a smaller K + current. In unclamped cells the decreased K + conductance causes spike-broadening and increased influx of Ca 2+ during each spike. Second, small depolarizations around resting potential (-55 mV to -35 mV) activate a steady-state Ca 2+ current that also contributes to the modulation of transmitter release, because, even with most presynaptic K + currents blocked pharmacologically, depolarizing the holding potential still increases transmitter release. In contrast to the steady-state Ca 2+ current, the transient inward Ca 2+ current evoked by depolarizing clamp steps is relatively unchanged from various holding potentials.Keywords
This publication has 34 references indexed in Scilit:
- Properties of Two Inward Membrane Currents in the HeartAnnual Review of Physiology, 1979
- Calcium Entry Leads to Inactivation of Calcium Channel in ParameciumScience, 1978
- The calcium current of Helix neuron.The Journal of general physiology, 1978
- A prolonged, voltage‐dependent calcium permeability revealed by tetraethylammonium in the soma and axon of Aplysia giant neuronJournal of Neurobiology, 1977
- Presynaptic Electrical Coupling in Aplysia : Effects on Postsynaptic Chemical TransmissionScience, 1977
- Time course separation of two inward currents in molluscan neuronsBrain Research, 1977
- Further identification of neurons in the abdominal ganglion ofAplysia using behavioral criteriaBrain Research, 1977
- The possible role of fixed membrane surface charges in acetylcholine release at the frog neuromuscular junctionThe Journal of Membrane Biology, 1973
- Intracellular calcium injection causes increased potassium conductance in Aplysia nerve cellsComparative Biochemistry and Physiology Part A: Physiology, 1972
- Electrokinetic mechanism of miniature postsynaptic potentials.Proceedings of the National Academy of Sciences, 1966