Simulation of postural control for a walking robot

Abstract
Postural control is of utmost importance for walking robots, particularly for those that traverse rugged terrain. A dynamic model for locomotion in rugged terrain is presented. The model has 18 actuated degrees of freedom, plus six unactuated body translations and rotations to produce a total of 24 degrees of freedom. Nonlinear foot-terrain interaction models keep track of nonconservative soil deformations, and allow feet to make or break contact any number of times during a simulation. The utilization of this model for postural control studies is presented. A modification of the vertical hybrid control by allocation method is proposed as a viable postural control scheme. However, it is shown that positional control is sufficient in order to achieve stable response with the mechanism.

This publication has 10 references indexed in Scilit: