Steady-state and transient electron transport within bulk wurtzite indium nitride: An updated semiclassical three-valley Monte Carlo simulation analysis

Abstract
Recent experimentation, performed on bulk wurtzite InN, suggests that the energy gap, the effective mass of the electrons in the lowest-energy valley, and the nonparabolicity coefficient of the lowest-energy valley are not as originally believed for this material. Using a semiclassical three-valley Monte Carlo simulation approach, we analyze the steady-state and transient electron transport that occurs within bulk wurtzite InN using a revised set of material parameters, this revised set of parameters taking into account this recently observed phenomenology. We find that the peak electron drift velocity is considerably greater than that found previously. The impact that this revised set of parameters has upon the transient electron transport is also found to be significant.