Construction and characterization of a site-directed CC-1065-N3-adenine adduct within a 117 base pair DNA restriction fragment
- 1 December 1986
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 25 (26) , 8430-8436
- https://doi.org/10.1021/bi00374a016
Abstract
The design, construction, and characterization of a site-directed CC-1065-N3-adenine adduct in a 117 base pair segment of M13mpI DNA are described. CC-1065 is an extremely potent antitumor antibiotic produced by Streptomyces zelensis. Previous studies have demonstrated that the cyclopropyl ring of CC-1065 reacts quite specifically with N3 of adenine in double-stranded DNA to form a CC-1065-DNA adduct. Following alkylation, the drug molecule lies snugly within the minor groove of DNA, overlapping with five base pairs for which a marked sequence preference exists [Hurley, L. H., Reynolds, V. R., Swenson, D. H., Petzold, G. L., and Scahill, T. A. (1984) Science (Washington, D.C.) 226, 843-844]. On the basis of the unique characteristics of the reaction of CC-1065 with DNA and the structure of the resulting DNA adduct, we have designed a general strategy to construct a site-directed CC-1065-DNA adduct in a restriction fragment. The presence of unique AluI and HaeIII restriction enzymes sites on each side of a high-affinity CC-1065 binding sequence (5''-GATTA) permitted the preparation of a partial duplex DNA molecule containing the CC-1065 binding sequence in the duplex DNA region. Since CC-1065 only binds to duplex DNA, potential CC-1065 binding sequences in the long single-stranded regions were protected from drug binding during the construction process. After purification of the CC-1065 partial duplex DNA adduct by differential melting of the modified and unmodified partial duplex DNA, DNA polymerase I was used to generate the full duplex DNA molecules, which contained a single site-directed CC-1065-N3-adenine adduct at adenine 6229 of the 117 base pair MspI-BstNI DNA restriction fragment of the Escherichia coli lac insert of M13mpI DNA. A CC-1065 thermal strand scission assay was used to confirm the unique binding site on the covalently modified strand. Methidiumpropyl-EDTA-iron(II) [MPE-Fe(II)] digestions were used to locate the binding site and the orientation of CC-1065 in the minor groove of DNA. MPE-Fe(II) footprinting revealed a slight enhancement of digestion on both DNA strands, but just to one side of the CC-1065-DNA adduct.This publication has 16 references indexed in Scilit:
- The molecular origin of DNA-drug specificity in netropsin and distamycin.Proceedings of the National Academy of Sciences, 1985
- Reaction of the Antitumor Antibiotic CC-1065 with DNA: Structure of a DNA Adduct with DNA Sequence SpecificityScience, 1984
- The reaction of anthramycin with DNA. Proton and carbon nuclear magnetic resonance studies on the structure of the anthramycin-DNA adduct.Journal of Biological Chemistry, 1984
- CC-1065 (NSC-298223), A MOST POTENT ANTI-TUMOR AGENT - KINETICS OF INHIBITION OF GROWTH, DNA-SYNTHESIS, AND CELL-SURVIVAL1982
- MECHANISM OF INTERACTION OF CC-1065 (NSC-298223) WITH DNA1982
- The structure of CC-1065, a potent antitumor agent and its binding to DNAJournal of the American Chemical Society, 1981
- Pyrrolo[1,4]benzodiazepine antibiotics. Proposed structures and characteristics of the in vitro deoxyribonucleic acid adducts of anthramycin, tomaymycin, sibiromycin, and neothramycins A and BBiochemistry, 1981
- CC-1065(NSC 298223), a potent new antitumor agent. Improved production and isolation, characterization and antitumor activity.The Journal of Antibiotics, 1981
- Molecular structure of an anticancer drug-DNA complex: daunomycin plus d(CpGpTpApCpG).Proceedings of the National Academy of Sciences, 1980
- CC-1065 (NSC-298223), a new antitumor antibiotic. Production, in vitro biological activity, microbiological assays and taxonomy of the producing microorganism.The Journal of Antibiotics, 1978