A Scalar Product Model for the Multidimensional Scaling of Choice

Abstract
A multidimensional scaling analysis is presented for replicated layouts of pairwise choice responses. In most applications the replicates will represent individuals who respond to all pairs in some set of objects. The replicates and the objects are scaled in a joint space by means of an inner product model which assigns weights to each of the dimensions of the space. Least squares estimates of the replicates' and objects' coordinates, and of unscalability parameters, are obtained through a manipulation of the error sum of squares for fitting the model. The solution involves the reduction of a three-way least squares problem to two subproblems, one trivial and the other solvable by classical least squares matrix factorization. The analytic technique is illustrated with political preference data and is contrasted with multidimensional unfolding in the domain of preferential choice.

This publication has 11 references indexed in Scilit: