A dynamic gesture recognition system for the Korean sign language (KSL)

Abstract
The sign language is a method of communication for the deaf-mute. Articulated gestures and postures of hands and fingers are commonly used for the sign language. This paper presents a system which recognizes the Korean sign language (KSL) and translates into a normal Korean text. A pair of data-gloves are used as the sensing device for detecting motions of hands and fingers. For efficient recognition of gestures and postures, a technique of efficient classification of motions is proposed and a fuzzy min-max neural network is adopted for on-line pattern recognition.

This publication has 6 references indexed in Scilit: