Preparation and characterization of a viral DNA molecule containing a site-specific 2-aminofluorene adduct: A new probe for mutagenesis by carcinogens

Abstract
The synthetic oligonucleotide heptamer 5''-ATCCGTC-3'' was reacted with in vitro with N-acetoxy-N-(trifluoroacetyl)-2-aminofluorene and the resulting product isolated by reverse-phase high-performance liquid chromatography (HPLC). This purified oligonucleotide, which was shown by chemical and enzymatic analysis to be a heptamer containing a single N-(deoxyguanin-8-yl)-2-aminofluorene adduct, was then used to situate the putatively mutagenic aminofluorene lesion within the genome of M13 mp9 by ligating it into a complementary single-stranded region located at a specific site in the negative strand of the duplex M13 mp9 DNA molecule. The presence of the adduct at the anticipated location was confirmed by taking advantage of the facts that AF adducts inhibit many restriction enzymes when located in or near their restriction sites and that the AF moiety should be contained within the HincII recognition sequence on M13 mp9 DNA. Upon attempted cleavage of the M13 DNA containing the site-specific AF adduct with HincII, we find that the large majority of the DNA remained circular, demonstrating the incorporation of the AF adduct in high yield into the DNA molecule at this location. This system should prove useful in vivo for the study of mutagenesis by chemical carcinogens and in vitro to study the interaction of purified DNA metabolizing proteins with a template containing a site-specific lesion.

This publication has 21 references indexed in Scilit: