Tumor Regression by Targeted Gene Delivery to the Neovasculature

Abstract
Efforts to influence the biology of blood vessels by gene delivery have been hampered by a lack of targeting vectors specific for endothelial cells in diseased tissues. Here we show that a cationic nanoparticle (NP) coupled to an integrin αvβ3–targeting ligand can deliver genes selectively to angiogenic blood vessels in tumor-bearing mice. The therapeutic efficacy of this approach was tested by generating NPs conjugated to a mutant Raf gene,ATPμ-Raf, which blocks endothelial signaling and angiogenesis in response to multiple growth factors. Systemic injection of the NP into mice resulted in apoptosis of the tumor-associated endothelium, ultimately leading to tumor cell apoptosis and sustained regression of established primary and metastatic tumors.