Genomic Interspecies Microarray Hybridization: Rapid Discovery of Three Thousand Genes in the Maize Endophyte, Klebsiella pneumoniae 342, by Microarray Hybridization with Escherichia coli K-12 Open Reading Frames
Open Access
- 1 April 2001
- journal article
- Published by American Society for Microbiology in Applied and Environmental Microbiology
- Vol. 67 (4) , 1911-1921
- https://doi.org/10.1128/aem.67.4.1911-1921.2001
Abstract
In an effort to efficiently discover genes in the diazotrophic endophyte of maize, Klebsiella pneumoniae 342, DNA from strain 342 was hybridized to a microarray containing 96% ( n = 4,098) of the annotated open reading frames from Escherichia coli K-12. Using a criterion of 55% identity or greater, 3,000 (70%) of the E. coli K-12 open reading frames were also found to be present in strain 342. Approximately 24% ( n = 1,030) of the E. coli K-12 open reading frames are absent in strain 342. For 1.6% ( n = 68) of the open reading frames, the signal was too low to make a determination regarding the presence or absence of the gene. Genes with high identity between the two organisms are those involved in energy metabolism, amino acid metabolism, fatty acid metabolism, cofactor synthesis, cell division, DNA replication, transcription, translation, transport, and regulatory proteins. Functions that were less highly conserved included carbon compound metabolism, membrane proteins, structural proteins, putative transport proteins, cell processes such as adaptation and protection, and central intermediary metabolism. Open reading frames of E. coli K-12 with little or no identity in strain 342 included putative regulatory proteins, putative chaperones, surface structure proteins, mobility proteins, putative enzymes, hypothetical proteins, and proteins of unknown function, as well as genes presumed to have been acquired by lateral transfer from sources such as phage, plasmids, or transposons. The results were in agreement with the physiological properties of the two strains. Whole genome comparisons by genomic interspecies microarray hybridization are shown to rapidly identify thousands of genes in a previously uncharacterized bacterial genome provided that the genome of a close relative has been fully sequenced. This approach will become increasingly more useful as more full genome sequences become available.Keywords
This publication has 18 references indexed in Scilit:
- Molecular and Biological Analysis of Eight Genetic Islands That Distinguish Neisseria meningitidis from the Closely Related Pathogen Neisseria gonorrhoeaeInfection and Immunity, 2000
- Immunolocalization of Dinitrogenase Reductase Produced by Klebsiella pneumoniae in Association with Zea mays LApplied and Environmental Microbiology, 2000
- Genomic DNA shuffling in archaebacteriaProceedings of the Japan Academy, Series B, 1999
- The Complete Genome Sequence of Escherichia coli K-12Science, 1997
- Conserved Clusters of Functionally Related Genes in Two Bacterial GenomesJournal of Molecular Evolution, 1997
- Analysis of the genetic differences between Neisseria meningitidis and Neisseria gonorrhoeae: two closely related bacteria expressing two different pathogenicities.Proceedings of the National Academy of Sciences, 1996
- A diazotrophic bacterial endophyte isolated from stems of Zea mays L. and Zea luxurians Iltis and DoebleyPlant and Soil, 1996
- Survey of indigenous bacterial endophytes from cotton and sweet cornPlant and Soil, 1995
- Cloning the Differences Between Two Complex GenomesScience, 1993
- The distribution of some fungal and bacterial endophytes in maize (Zea mays L.)New Phytologist, 1992