A generalized approximation of the Fermi–Dirac integrals
- 1 May 1983
- journal article
- Published by AIP Publishing in Journal of Applied Physics
- Vol. 54 (5) , 2850-2851
- https://doi.org/10.1063/1.332276
Abstract
An analytical approximation for the Fermi–Dirac integral F j(η) for real j is proposed. This approximation works for −∞< η < ∞, with an error of 1.2% for −1/2< j < 1/2 and 0.7% for 1/2 < j < 5/2. The error increases with j for higher j values.This publication has 8 references indexed in Scilit:
- Approximations to Fermi-Dirac integrals and their use in device analysisProceedings of the IEEE, 1982
- An analytical approximation for the Fermi-Dirac integralSolid-State Electronics, 1981
- Empirical approximations for the Fermi energy in a semiconductor with parabolic bandsApplied Physics Letters, 1978
- The approximation of the Fermi-Dirac integral (η)Physics Letters A, 1978
- Sur une approximation de l'intégrale F1/2 de Fermi Dirac par un développement polynomialRevue de Physique Appliquée, 1978
- Analytic approximations for the Fermi energy of an ideal Fermi gasApplied Physics Letters, 1977
- Current multiplication in metal-insulator-semiconductor (MIS) tunnel diodesSolid-State Electronics, 1974
- The Fermi-Dirac integrals $$\mathcal{F}_p (\eta ) = (p!)^{ - 1} \int\limits_0^\infty {\varepsilon ^p (e^{\varepsilon - \eta } + 1} )^{ - 1} d\varepsilon $$Applied Scientific Research, Section B, 1957