Archaeal Pyrococcus furiosus thymidylate synthase 1 is an RNA-binding protein

Abstract
Using a stem–loop RNA oligonucleotide (19-mer) containing an AUG sequence in the loop region as a probe, we screened the protein library from a hyperthermophilic archaeon, Pyrococcus furiosus, and found that a flavin-dependent thymidylate synthase, Pf-Thy1 (Pyrococcus furiosus thymidylate synthase 1), possessed RNA-binding activity. Recombinant Pf-Thy1 was able to bind to the stem–loop structure at a high temperature (75 °C) with an apparent dissociation constant of 0.6 μM. A similar stem–loop RNA structure was located around the translation start AUG codon of Pf-Thy1 RNA, and gel-shift analysis revealed that Pf-Thy1 could also bind to this stem–loop structure. In vitro translation analysis using chimaeric constructs containing the stem–loop sequence in their Pf-Thy1 RNA and a luciferase reporter gene indicated that the stem–loop structure acted as an inhibitory regulator of translation by preventing the binding of its Shine–Dalgarno-like sequence by positioning it in the stem region. Addition of Pf-Thy1 into the in vitro translation system also inhibited translation. These results suggested that this class of thymidylate synthases may autoregulate their own translation in a manner analogous to that of the well characterized thymidylate synthase A proteins, although there is no significant amino acid sequence similarity between them.