Adhesion molecules and tumor cell interaction with endothelium and subendothelial matrix
- 1 November 1992
- journal article
- review article
- Published by Springer Nature in Cancer and Metastasis Reviews
- Vol. 11 (3-4) , 353-375
- https://doi.org/10.1007/bf01307187
Abstract
Cancer metastasis poses the greatest challenge to the eradication of malignancy. The majority of clinical and experimental evidence indicates that metastasis is a non-random, organ-specific process. Tumor cell interaction with endothelium and subendothelial matrix constitutes the most crucial factor in determining the organ preference of metastasis. A plethora of cell surface adhesion molecules, which encompass four major families (i.e., integrins, cadherins, immunoglobulins and selectins) and many other unclassified molecules, mediate tumor-host interactions. Adhesion molecules and adhesion processes are involved in most, if not all, of the intermediate steps of the metastatic cascade. Decreased E-cadherin expression and increased CD44 expression are clearly correlated with the acquisition of the invasive capacity of primary tumor cells. Similarly, altered expression pattern of many other adhesion molecules such as upregulated expression of the laminin receptors and depressed expression of fibronectin receptors (α5β1) appears to be involved in tumor cell invasion into the subendothelial matrix. Tumor cell-endothelium interactions involve several well-defined sequential steps that can be analyzed by the ‘Docking and Locking’ hypothesis at the molecular level. Tumor cell-matrix interactions are determined by the repertoire of adhesion receptors of tumor cells and the unique composition of organ-specific matrices. Our experimental data, together with others', suggest that the integrin αIIbβ3 is one of the major players in these tumor-host interactions. Tumor-host interaction is a dynamic process which is constantly modulated by a host of factors including various cytokines, growth factors and arachidonate metabolites such as 12(S)-HETE. Delineation of the molecular mechanisms of tumor-host interactions may provide additional means to intervene in the metastatic process.Keywords
This publication has 162 references indexed in Scilit:
- αIIbβ3 Integrin expression and function in subpopulations of murine tumorsExperimental Cell Research, 1992
- Recombinant E-selectin-protein mediates tumor cell adhesion via Sialyl-Lea and sialyl-LexBiochemical and Biophysical Research Communications, 1992
- Inhibition of selectin-dependent tumor cell adhesion to endothelial cells and platelets by blocking O-glycosylation of these cellsBiochemical and Biophysical Research Communications, 1992
- Increased expression of the 67kDa-laminin receptor gene in human small cell lung cancerBiochemical and Biophysical Research Communications, 1992
- Selectin GMP-140 (CD62; PADGEM) binds to sialosyl-Lea and sialosyl-Lex, and sulfated glycans modulate this bindingBiochemical and Biophysical Research Communications, 1991
- Human lung tumor-associated antigen identified as an extracellular matrix adhesion molecule.The Journal of Experimental Medicine, 1991
- Analysis of integrin mRNA in human and rodent tumor cellsBiochemical and Biophysical Research Communications, 1991
- Human microvascular endothelial cells use beta 1 and beta 3 integrin receptor complexes to attach to laminin.The Journal of cell biology, 1990
- The Cellular Basis of Site-Specific Tumor MetastasisNew England Journal of Medicine, 1990
- Carcinoembryonic antigen, a human tumor marker, functions as an intercellular adhesion moleculePublished by Elsevier ,1989