Secobarbital Attenuates Excitotoxicity but Potentiates Oxygen—Glucose Deprivation Neuronal Injury in Cortical Cell Culture

Abstract
We examined the effects of secobarbital and other sedative-hypnotic barbiturates on the neuronal death induced by exposure to excitatory amino acids or deprivation of oxygen or glucose in mouse cortical cell cultures. N-Methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate, and kainate toxicities were attenuated in a concentration-dependent fashion by high concentrations of secobarbital or thiopental. Antagonism of NMDA toxicity was not overcome by increasing NMDA concentration and not mimicked by γ-aminobutyrate. Despite these antiexcitotoxic actions, secobarbital exacerbated the neuronal death induced by deprivation of either glucose alone or oxygen and glucose together; death induced by oxygen deprivation alone was little affected. Thiopental and methohexital also increased oxygen-glucose deprivation injury. A possible explanation for this injury potentiation was provided by the observation that secobarbital enhanced the cellular ATP depletion induced by combined oxygen-glucose deprivation. Deleterious effects on ATP production may counterbalance the protective effects of barbiturates under some conditions.