Chemostat studies on the regulation of glucose metabolism in Pseudomonas aeruginosa by citrate
- 1 February 1973
- journal article
- Published by Portland Press Ltd. in Biochemical Journal
- Vol. 132 (2) , 129-140
- https://doi.org/10.1042/bj1320129
Abstract
The effect of the relative concentrations of citrate and glucose on the regulation of key enzymes of the direct oxidative, phosphorylative, Entner–Doudoroff and pentose-cycle pathways of glucose metabolism in Pseudomonas aeruginosa has been investigated in continuous culture under conditions of NH4+-limitation. For comparison isocitrate dehydrogenase and aconitase were also assayed. Measurements were made for steady-state and transient conditions and the effect of growth rate was also studied. When cells grew on 75mm-citrate the glucose concentration had to attain 6–8mm before significant induction of enzymes of glucose metabolism occurred; the specific activities increased further as the result of both raising the glucose concentration to 30mm and then subsequently lowering the citrate to 60mm and then to 45mm. The specific activities of the glucose enzymes increased immediately during the transient period between the steady states characteristic of growth on 6mm- and 8mm-glucose, the increase continuing for about two doubling times. The converse experiment of adding increasing citrate concentrations to 45mm-glucose medium revealed an immediate induction of the citrate-transport system, oxidation of citrate following the increase in citrate concentration up to 8mm. Between 8mm- and 16mm-citrate a marked repression of gluconate, glucose 6-phosphate and 6-phosphogluconate dehydrogenases and the Entner–Doudoroff enzymes occurred. Increased growth rate in citrate medium resulted in decreased specific activities of glucose 6-phosphate dehydrogenase and isocitrate dehydrogenase. Increased growth rate in citrate–glucose medium gave decreased specific activities of isocitrate dehydrogenase and aconitase whereas the activities of some of the glucose enzymes decreased initially but then increased at the highest growth rate (0.5h-1), at which a marked increase in glucose utilization occurred. These observations accord with the regulation of glucose enzymes by induction with glucose or its metabolites and repression by citrate or its metabolic products.Keywords
This publication has 18 references indexed in Scilit:
- An Evaluation of the Pathways of Metabolism of Glucose, Gluconate and 2-Oxogluconate by Pseudomonas Aeruginosa by Measurement of Molar Growth YieldsJournal of General Microbiology, 1969
- Regulation of metabolism in facultative bacteriaII. Effects of aerobiosis, anaerbiosis and nutrition on the formation of Krebs cycle enzymes in escherchia coliBiochimica et Biophysica Acta (BBA) - General Subjects, 1966
- Regulation of Bacterial Enzyme Synthesis by Induction and RepressionNature, 1964
- The precision of ultraviolet absorption measurements in the Schmidt-Thannhauser procedure for nucleic acid estimationBiochimica et Biophysica Acta, 1962
- The Measurement of Bacterial Viabilities by Slide CultureJournal of General Microbiology, 1961
- The catabolism of glucose and gluconate in Pseudomonas speciesArchives of Biochemistry and Biophysics, 1959
- Evidence for the Occurrence of Permeases for Tricarboxylic Acid Cycle Intermediates in Pseudomonas aeruginosaJournal of General Microbiology, 1959
- Formation of 2-ketogluconate from glucose by a cell-free preparation of Pseudomonas aeruginosaArchives of Biochemistry and Biophysics, 1953
- Heritable and Non-heritable Loss of Ability by Aerobacter aerogenes to Grow Adaptively on Single Carbon SourcesJournal of General Microbiology, 1952
- The Determination of Small Quantities of Bacteria by means of the Biuret ReactionJournal of General Microbiology, 1951