Plant Virus-Derived Small Interfering RNAs Originate Predominantly from Highly Structured Single-Stranded Viral RNAs

Top Cited Papers
Open Access
Abstract
RNA silencing is conserved in a broad range of eukaryotes and includes the phenomena of RNA interference in animals and posttranscriptional gene silencing (PTGS) in plants. In plants, PTGS acts as an antiviral system; a successful virus infection requires suppression or evasion of the induced silencing response. Small interfering RNAs (siRNAs) accumulate in plants infected with positive-strand RNA viruses and provide specificity to this RNA-mediated defense. We present here the results of a survey of virus-specific siRNAs characterized by a sequence analysis of siRNAs from plants infected withCymbidium ringspot tombusvirus(CymRSV). CymRSV siRNA sequences have a nonrandom distribution along the length of the viral genome, suggesting that there are hot spots for virus-derived siRNA generation. CymRSV siRNAs bound to the CymRSV p19 suppressor protein have the same asymmetry in strand polarity as the sequenced siRNAs and are imperfect double-stranded RNA duplexes. Moreover, an analysis of siRNAs derived from two other nonrelated positive-strand RNA viruses showed that they displayed the same asymmetry as CymRSV siRNAs. Finally, we show thatTobacco mosaic virus(TMV) carrying a short inverted repeat of the phytoene desaturase (PDS) gene triggered more accumulation ofPDSsiRNAs than the corresponding antisensePDSsequence. Taken together, these results suggest that virus-derived siRNAs originate predominantly by direct DICER cleavage of imperfect duplexes in the most folded regions of the positive strand of the viral RNA.