Growth Inhibition and Apoptosis Induced by Osthole, A Natural Coumarin, in Hepatocellular Carcinoma
Open Access
- 25 May 2012
- journal article
- research article
- Published by Public Library of Science (PLoS) in PLOS ONE
- Vol. 7 (5) , e37865
- https://doi.org/10.1371/journal.pone.0037865
Abstract
Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed tumors worldwide and is known to be resistant to conventional chemotherapy. New therapeutic strategies are urgently needed for treating HCC. Osthole, a natural coumarin derivative, has been shown to have anti-tumor activity. However, the effects of osthole on HCC have not yet been reported. HCC cell lines were treated with osthole at various concentrations for 24, 48 and 72 hours. The proliferations of the HCC cells were measured by MTT assays. Cell cycle distribution and apoptosis were determined by flow cytometry. HCC tumor models were established in mice by subcutaneously injection of SMMC-7721 or Hepa1-6 cells and the effect of osthole on tumor growths in vivo and the drug toxicity were studied. NF-κB activity after osthole treatment was determined by electrophoretic mobility shift assays and the expression of caspase-3 was measured by western blotting. The expression levels of other apoptosis-related genes were also determined by real-time PCR (PCR array) assays. Osthole displayed a dose- and time-dependent inhibition of the HCC cell proliferations in vitro. It also induced apoptosis and caused cell accumulation in G2 phase. Osthole could significantly suppress HCC tumor growth in vivo with no toxicity at the dose we used. NF-κB activity was significantly suppressed by osthole at the dose- and time-dependent manner. The cleaved caspase-3 was also increased by osthole treatment. The expression levels of some apoptosis-related genes that belong to TNF ligand family, TNF receptor family, Bcl-2 family, caspase family, TRAF family, death domain family, CIDE domain and death effector domain family and CARD family were all increased with osthole treatment. Osthole could significantly inhibit HCC growth in vitro and in vivo through cell cycle arrest and inducing apoptosis by suppressing NF-κB activity and promoting the expressions of apoptosis-related genes.Keywords
This publication has 53 references indexed in Scilit:
- Osthole induces G2/M arrest and apoptosis in lung cancer A549 cells by modulating PI3K/Akt pathwayJournal of Experimental & Clinical Cancer Research, 2011
- Apoptogenic effect of 7,8-diacetoxy-4-methylcoumarin and 7,8-diacetoxy-4-methylthiocoumarin in human lung adenocarcinoma cell line: Role of NF-κB, Akt, ROS and MAP kinase pathwayChemico-Biological Interactions, 2008
- NF-κB in carcinoma therapy and preventionEmerging Therapeutic Targets, 2008
- Interferon‐γ sensitizes hepatitis B virus‐expressing hepatocarcinoma cells to 5‐fluorouracil through inhibition of hepatitis B virus‐mediated nuclear factor‐κB activationCancer Science, 2007
- Immunomodulatory activities of common vegetables and spices of Umbelliferae and its related coumarins and flavonoidsFood Chemistry, 2007
- 7,8‐Dihydroxy‐4‐methylcoumarin induces apoptosis of human lung adenocarcinoma cells by ROS‐independent mitochondrial pathway through partial inhibition of ERK/MAPK signalingFEBS Letters, 2007
- Luteolin Promotes Degradation in Signal Transducer and Activator of Transcription 3 in Human Hepatoma Cells: An Implication for the Antitumor Potential of FlavonoidsCancer Research, 2006
- Induction of Apoptosis by the Anthocyanidins through Regulation of Bcl-2 Gene and Activation of c-Jun N-Terminal Kinase Cascade in Hepatoma CellsJournal of Agricultural and Food Chemistry, 2005
- Systematic review of randomized trials for unresectable hepatocellular carcinoma: Chemoembolization improves survivalHepatology, 2003
- Treatment with coumarin to prevent or delay recurrence of malignant melanomaZeitschrift für Krebsforschung und Klinische Onkologie, 1994