Direct measurements of slip in sheared polymer solutions

Abstract
We report direct measurements of slip flow during and after plane-Couette shearing of poly(styrene) solutions between glass surfaces. Slip is studied by visualizing the microscopic motions of micron-sized silica spheres suspended in the solutions. Slip velocities as large as 4 μm s−1 are observed during shear, and recoil displacements of as much as 80 μm are observed at the glass surfaces after the driving surface stops moving. Significant slip is observed when the Weissenberg number $\lambda\dot{\gamma}$ exceeds 0.5 or so, where λ is the relaxation time and $\dot{\gamma}$ the shear rate. The magnitude of the slip correlates strongly with the fluid's birefringence, indicating that slip is induced by polymer stress or orientation. Away from the centre of the sample, toward the free edges, a secondary flow is observed, which appears to be driven by a normal-stress imbalance at these edges.