Abstract
This paper dwells on the choice between the ordinary least squares and the estimated generalized least squares estimators when the presence of heteroskedasticity is suspected. Since the estimated generalized least squares estimator does not dominate the ordinary least squares estimator completely over the whole parameter space, it is of interest to the researcher to know in advance whether the degree of severity of heteroskedasticity is such that OLS estimator outperforms the estimated generalized least squares (or 2SAE). Casting the problem in the non-spherical error mold and exploiting the principle underlying the Bayesian pretest estimator, an intuitive non-mathematical procedure is proposed to serve as an aid to the researcher in deciding when to use either the ordinary least squares (OLS) or the estimated generalized least squares (2SAE) estimators.

This publication has 13 references indexed in Scilit: