27 MHz hybrid evanescent-mode applicators (HEMA) with flexible heating field for deep and safe subcutaneous hyperthermia

Abstract
A new class of low-frequency electromagnetic applicators for hyperthermic treatment of superficial and subcutaneous tissues is described. These applicators employ an air-filled waveguide segment which is operating below the cut-off frequency, the evanescent modes of which are energized by suitable exciters to produce model field components. Direct radiators are integrated into the waveguide to generate additional direct field components. All field components may be combined in different power level ratio, phase, and orientation, to provide a composite heating field exhibiting a large variety of field sizes, shapes, and penetration features. The composite field emerging from the waveguide aperture propagates within the tissue to be heated through a non-critical air-gap. These versatile heating devices appear of potential interest to heat a variety of deep and localized subcutaneous tissues to therapeutic temperatures without injury to access fat layers of substantial thickness.