Exposure of human peripheral blood lymphocytes to electromagnetic fields associated with cellular phones leads to chromosomal instability
- 10 January 2003
- journal article
- research article
- Published by Wiley in Bioelectromagnetics
- Vol. 24 (2) , 82-90
- https://doi.org/10.1002/bem.10086
Abstract
Whether exposure to radiation emitted from cellular phones poses a health hazard is at the focus of current debate. We have examined whether in vitro exposure of human peripheral blood lymphocytes (PBL) to continuous 830 MHz electromagnetic fields causes losses and gains of chromosomes (aneuploidy), a major “somatic mutation” leading to genomic instability and thereby to cancer. PBL were irradiated at different average absorption rates (SAR) in the range of 1.6–8.8 W/kg for 72 hr in an exposure system based on a parallel plate resonator at temperatures ranging from 34.5–37.5 °C. The averaged SAR and its distribution in the exposed tissue culture flask were determined by combining measurements and numerical analysis based on a finite element simulation code. A linear increase in chromosome 17 aneuploidy was observed as a function of the SAR value, demonstrating that this radiation has a genotoxic effect. The SAR dependent aneuploidy was accompanied by an abnormal mode of replication of the chromosome 17 region engaged in segregation (repetitive DNA arrays associated with the centromere), suggesting that epigenetic alterations are involved in the SAR dependent genetic toxicity. Control experiments (i.e., without any RF radiation) carried out in the temperature range of 34.5–38.5 °C showed that elevated temperature is not associated with either the genetic or epigenetic alterations observed following RF radiation—the increased levels of aneuploidy and the modification in replication of the centromeric DNA arrays. These findings indicate that the genotoxic effect of the electromagnetic radiation is elicited via a non‐thermal pathway. Moreover, the fact that aneuploidy is a phenomenon known to increase the risk for cancer, should be taken into consideration in future evaluation of exposure guidelines. Bioelectromagnetics 24:82–90, 2003.Keywords
This publication has 37 references indexed in Scilit:
- Thermal and nonthermal mechanisms of interaction of radio-frequency energy with biological systemsIEEE Transactions on Plasma Science, 2000
- Molecular chaperone function of mammalian Hsp70 and Hsp40-a reviewInternational Journal of Hyperthermia, 2000
- Effects of Exposure to Repetitive Pulsed Magnetic Stimulation on Cell Proliferation and Expression of Heat Shock Protein 70 in Normal and Malignant CellsBiochemical and Biophysical Research Communications, 1999
- The mitotic machinery as a source of genetic instability in cancerSeminars in Cancer Biology, 1999
- Analysis of Replication Timing of Ribosomal RNA Genes by FluorescenceIn SituHybridizationDNA and Cell Biology, 1997
- Assessment of Cellular Telephone and Other Radio Frequency Exposure for Epidemiologic ResearchEpidemiology, 1996
- Cancer morbidity in subjects occupationally exposed to high frequency (radiofrequency and microwave) electromagnetic radiationScience of The Total Environment, 1996
- Hyperthermic induction of premature chromosome condensation in human lymphocytesMutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1995
- Detection of cell-cycle stage by fluorescence in situ hybridization: its application in human interphase cytogeneticsCytogenetic and Genome Research, 1992
- X-ray-induced Delay in the Chinese Hamster Cell-cycle: Dependence on Phase Irradiated under Different Culturing Conditions, BUdR Incorporation, and Hypertonic TreatmentInternational Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 1973