Narrow Photoluminescence Line Width of Closely Stacked InAs Self-Assembled Quantum Dot Structures

Abstract
We report an effect of interval layer thickness in stacked InAs self-assembled quantum dot (QD) structures on photoluminescecnce (PL) characteristics focusing on thicknesses less than 3 nm. A drastic decrease in PL line width as narrow as 21 meV at 4.2 K was obtained with 2-nm interval layers. PL measurements show that the stacked structure forms an equivalent single QD structure which vertical size is extended effectively more than that of single layer QD. This attributes to the decrease of PL line width governed by the fluctuation mainly in the vertical direction. PL from higher order quantized states up to the 4th state are also clearly observed.