Degree of dissociation measured by FTIR absorption spectroscopy applied to VHF silane plasmas

Abstract
In situ Fourier transform infrared (FTIR) absorption spectroscopy has been used to determine the fractional depletion of silane in a radio-frequency (rf) glow discharge. The technique used a simple single-pass arrangement and was implemented in a large-area industrial reactor for deposition of amorphous silicon. Measurements were made on silane plasmas for a range of excitation frequencies. It was observed that, at constant plasma power, the fractional depletion increased from 35% at 13.56 MHz to 70% at 70 MHz. With a simple model based on the density continuity equations in the gas phase, it was shown that this increase is due to a higher dissociation rate and is largely responsible for the observed increase in the deposition rate with the frequency.