Involvement of prostaglandin E2, cAMP, and vasopressin in lithium-induced polyuria

Abstract
The involvement of prostaglandin E2 (PGE2), adenosine 3',5'-cyclic monophosphate (cAMP), and vasopressin in lithium-induced polyuria was investigated in rats. Administration of LiCl (4 mmol/kg body wt) for 7 days induced a marked polyuria with a significant excretion of urinary PGE2. Administration of indomethacin (IND, 5 mg/kg body wt) for 4 days to lithium-induced diabetes insipidus (LiDI) rats diminished urine volume by 80% and urinary PGE2 by 85%. The in vitro data of the intact rat kidney showed that lithium stimulated arginine vasopressin (AVP)-induced PGE2 production and suggested that PGE2 suppressed cAMP synthesis in rat renal medulla. The AVP-induced PGE2 synthesis was greater and the AVP-stimulated cAMP production lower in the LiDI rat kidney in vitro. Interference of the vasopressin-associated cAMP system and the increased PGE2 synthesis in the kidney may be involved in the development of LiDI. The reduced cAMP production in the LiDI rat kidney might be partly due to the increased PGE2 synthesis. In LiDI rats plasma vasopressin increased, whereas AVP concentration in the hypothalamus and the neurohypophysis significantly decreased. It is postulated that lithium stimulates vasopressin release from the central nervous system and that elevated plasma vasopressin potentiates PGE2 production in the kidney synergistically with lithium.