Inversion relations and disorder solutions on Potts models

Abstract
The inversion symmetry and the automorphy group generated by the latter, when combined with the spatial symmetries, are studied for the anisotropic Potts models on the triangular and checkerboard lattices. The exact expression of the partition function, which is known on some particular disorder subvarieties of the triangular model, is checked and a generalisation is proposed for the checkerboard lattice. The automorphy group is then used to extend the disorder solutions to the infinity of transformed subvarieties.

This publication has 24 references indexed in Scilit: