Diazonamide A and a Synthetic Structural Analog: Disruptive Effects on Mitosis and Cellular Microtubules and Analysis of Their Interactions with Tubulin
- 1 June 2003
- journal article
- research article
- Published by Elsevier in Molecular Pharmacology
- Vol. 63 (6) , 1273-1280
- https://doi.org/10.1124/mol.63.6.1273
Abstract
The marine ascidian Diazona angulata was the source organism for the complex cytotoxic peptide diazonamide A. The molecular structure of this peptide was recently revised after synthesis of a biologically active analog of diazonamide A in which a single nitrogen atom was replaced by an oxygen atom. Diazonamide A causes cells to arrest in mitosis, and, after exposure to the drug, treated cells lose both interphase and spindle microtubules. Both diazonamide A and the oxygen analog are potent inhibitors of microtubule assembly, equivalent in activity to dolastatin 10 and therefore far more potent than dolastatin 15. This inhibition of microtubule assembly is accompanied by potent inhibition of tubulin-dependent GTP hydrolysis, also comparable with the effects observed with dolastatin 10. However, the remaining biochemical properties of diazonamide A and its analog differ markedly from those of dolastatin 10 and closely resemble the properties of dolastatin 15. Neither diazonamide A nor the analog inhibited the binding of [3H]vinblastine, [3H]dolastatin 10, or [8-14C]GTP to tubulin. Nor were they able to stabilize the colchicine binding activity of tubulin. These observations indicate either that diazonamide A and the analog have a unique binding site on tubulin differing from the vinca alkaloid and dolastatin 10 binding sites, or that diazonamide A and the analog bind weakly to unpolymerized tubulin but strongly to microtubule ends. If the latter is correct, diazonamide A and its oxygen analog should have uniquely potent inhibitory effects on the dynamic properties of microtubules.Keywords
This publication has 31 references indexed in Scilit:
- Antimitotic Peptides and DepsipeptidesCurrent Medicinal Chemistry - Anti-Cancer Agents, 2012
- Inhibition of tubulin polymerization by vitilevuamide, a bicyclic marine peptide, at a site distinct from colchicine, the vinca alkaloids, and dolastatin 10Biochemical Pharmacology, 2002
- Dolastatin 11, a Marine Depsipeptide, Arrests Cells at Cytokinesis and Induces Hyperpolymerization of Purified ActinMolecular Pharmacology, 2001
- The magnesium–GTP interaction in microtubule assemblyEuropean Journal of Biochemistry, 1994
- Chloroacetates of 2- and 3-demethylthiocolchicine: Specific covalent interactions with tubulin with preferential labeling of the β-subunitBiochemical and Biophysical Research Communications, 1992
- Dolastatin 15, a potent antimitotic depsipeptide derived from Dolabella auriculariaBiochemical Pharmacology, 1992
- Interactions of colchicine with tubulinPharmacology & Therapeutics, 1991
- Maytansine inhibits nucleotide binding at the exchangeable site of tubulinBiochemical and Biophysical Research Communications, 1985
- Separation of active tubulin and microtubule-associated proteins by ultracentrifugation and isolation of a component causing the formation of microtubule bundlesBiochemistry, 1984
- Cell-mediated immunity to human malignant cellsAmerican Journal of Obstetrics and Gynecology, 1972