Abstract
A Hadamard matrix of side is an matrix with every entry either or , which satisfies . Two Hadamard matrices are called equivalent if one can be obtained from the other by some sequence of row and column permutations and negations. To identify the equivalence of two Hadamard matrices by a complete search is known to be an NP hard problem when increases. In this paper, a new algorithm for detecting inequivalence of two Hadamard matrices is proposed, which is more sensitive than those known in the literature and which has a close relation with several measures of uniformity. As an application, we apply the new algorithm to verify the inequivalence of the known inequivalent Hadamard matrices of order ; furthermore, we show that there are at least pairwise inequivalent Hadamard matrices of order . The latter is a new discovery.

This publication has 12 references indexed in Scilit: