Femtosecond to nanosecond solvation dynamics in pure water and inside the γ-cyclodextrin cavity

Abstract
The dynamics of solvation of an excited chromophore in pure water and in a restricted space with a limited number of water molecules have been studied. The time-dependent Stokes shift of Coumarin 480 (C480) and Coumarin 460 (C460) were measured using femtosecond fluorescence upconversion and time-correlated single-photon-counting techniques. The system with a limited number of water molecules was an inclusion complex of Coumarin dyes with γ-cyclodextrin (γCD). The results of molecular dynamics simulations are compared with the observed solvent response in pure water and in the γCD cavity. The observed relaxation times range from γCD inclusion complex, additional long solvation time constants of 13, 109 and 1200 ps are observed. The stoichiometry, structure and dynamics of the Coumarin/γCD complexes are also discussed.