Size-Dependent Grain-Growth Kinetics Observed in Nanocrystalline Fe

Abstract
Measurements of grain growth in nanocrystalline Fe reveal a linear dependence of the grain size on annealing time, contradicting studies in coarser-grained materials, which find a parabolic (or power-law) dependence. When the grain size exceeds 150nm, a smooth transition from linear to nonlinear growth kinetics occurs, suggesting that the rate-controlling mechanism for grain growth depends on the grain size. The linear-stage growth rate agrees quantitatively with a model in which boundary migration is controlled by the redistribution of excess volume localized in the boundary cores.