Antioxidant Protection Systems of Rat Lung after Chronic Ethanol Inhalation

Abstract
The effect of chronic ethanol administration on pulmonary antioxidant protection systems was investigated in male Sprague-Dawley rats exposed to room air or room air containing ethanol ethanol vapors for 5 weeks. Blood ethanol concentrations in ethanol-exposed rats were usually between 200 and 300 mg/dl. Glutathione, vitamin E, and malondialdehyde concentrations were measured in lung homogenates, and antioxidant enzyme activities (catalase, glutathione peroxidase, Cu/Zn-superoxide dismutase, glutathione reductase) were determined in the supernatant fractions. For comparison, the measurements were also made using liver fractions. Ethanol treatment increased the activities of catalase (117%) and Cu/Zn-superoxide dismutase (25%) in lung but not in liver. Although chronic ethanol inhalation lowered hepatic glutathione (19%) and hepatic vitamin E (30%), there was no increase in malondialdehyde content in either liver or lung of ethanol-exposed rats. The elevation of pulmonary antioxidant enzyme activities could be interpreted to mean that lung is a target for ethanol-induced oxidative stress. However, as there was no loss of pulmonary GSH or vitamin E and no increase in malondialdehyde formation, it appears that long-term ethanol exposure did not produce a significant degree of oxidative stress in rat lung.