Mechanism of action of cholera toxin and the mobile receptor theory of hormone receptor-adenylate cyclase interactions.
- 1 January 1975
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 72 (1) , 33-37
- https://doi.org/10.1073/pnas.72.1.33
Abstract
Rat liver membrane adenylate cyclase (EC 4.6.1.1) that has been stimulated more than 10-fold by cholera toxin (choleragen) has a 3-fold greater sensitivity to stimulation by glucagon. Choleragen similarly increases the sensitivity of cyclase to other peptide (ACTH, vasoactive intestinal polypeptide) and nonpeptide (catecholamines) hormones in this and other tissues. The rate of 125I-labeled glucagon-membrane dissociation is decreased about 2-fold in toxin-treated liver membranes. Toxin-activated cyclase activity of fat cell membranes is retained upon solubilization with Lubrol PX. Provided 125I-labeled choleragen is first incubated with cells under conditions resulting in enzyme activation, the solubilized cyclase activity migrates with a component of 125I-labeled choleragen on gel filtration chromatography. Agarose derivatives containing the "active" subunit (molecular weight 36,000) of the toxin can specifically adsorb solubilized adenylate cyclase. Toxin-stimulated cyclase can be immunoprecipitated with antitoxin or anti-"active" subunit antibodies. There is a large excess of membrane receptors (ganglioside GM1) which, with the use of choleragenoid, can be shown to be functionally equivalent with respect to cyclase activation. Choleragenoid, an inactive competitive antagonist of toxin binding, can occupy and block a large proportion of toxin receptors without affecting toxin activity. A scheme of toxin action is proposed that involves lateral membrane diffusion of the initially inactive toxin-receptor complex with subsequent direct interaction with and modulation of adenylate cyclase. The basic features of this scheme may be pertinent to the mechanisms by which hormone receptors normally modulate adenylate cyclase.Keywords
This publication has 26 references indexed in Scilit:
- Membrane ReceptorsAnnual Review of Biochemistry, 1974
- Inhibitors of glucagon inactivationEffect on glucagon-receptor interactions and glucagon-stimulated adenylate cyclase activity in liver cell membranesBiochimica et Biophysica Acta (BBA) - General Subjects, 1974
- Cholera Toxin: Interaction of Subunits with Ganglioside G M1Science, 1974
- Affinity chromatography and structural analysis of Vibrio cholerae [Vibrio Comma] enterotoxin-ganglioside agarose and the biological effects of ganglioside-containing soluble polymersBiochemistry, 1973
- Interaction of Vibrio cholerae enterotoxin with cell membranesBiochemistry, 1973
- Subunit Structure of Cholera ToxinJournal of General Microbiology, 1973
- Deactivation of Cholera Toxin by a Sialidase-Resistant MonosialosylgangliosideThe Journal of Infectious Diseases, 1973
- A procedure for measurement of distribution spaces in isolated fat cellsBiochimica et Biophysica Acta (BBA) - General Subjects, 1972
- Intestinal Adenyl-Cyclase Activity in Canine Cholera: Correlation with Fluid AccumulationThe Journal of Infectious Diseases, 1972
- The Fluid Mosaic Model of the Structure of Cell MembranesScience, 1972