Growing functional modules from a seed protein via integration of protein interaction and gene expression data
Open Access
- 23 October 2007
- journal article
- Published by Springer Nature in BMC Bioinformatics
- Vol. 8 (1) , 408
- https://doi.org/10.1186/1471-2105-8-408
Abstract
Background: Nowadays modern biology aims at unravelling the strands of complex biological structures such as the protein-protein interaction (PPI) networks. A key concept in the organization of PPI networks is the existence of dense subnetworks (functional modules) in them. In recent approaches clustering algorithms were applied at these networks and the resulting subnetworks were evaluated by estimating the coverage of well-established protein complexes they contained. However, most of these algorithms elaborate on an unweighted graph structure which in turn fails to elevate those interactions that would contribute to the construction of biologically more valid and coherent functional modules. Results: In the current study, we present a method that corroborates the integration of protein interaction and microarray data via the discovery of biologically valid functional modules. Initially the gene expression information is overlaid as weights onto the PPI network and the enriched PPI graph allows us to exploit its topological aspects, while simultaneously highlights enhanced functional association in specific pairs of proteins. Then we present an algorithm that unveils the functional modules of the weighted graph by expanding a kernel protein set, which originates from a given 'seed' protein used as starting-point. Conclusion: The integrated data and the concept of our approach provide reliable functional modules. We give proofs based on yeast data that our method manages to give accurate results in terms both of structural coherency, as well as functional consistency.Keywords
This publication has 49 references indexed in Scilit:
- A General Framework for Weighted Gene Co-Expression Network AnalysisStatistical Applications in Genetics and Molecular Biology, 2005
- The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomesNucleic Acids Research, 2004
- Protein complexes and functional modules in molecular networksProceedings of the National Academy of Sciences, 2003
- Detection of functional modules from protein interaction networksProteins-Structure Function and Bioinformatics, 2003
- Comparative assessment of large-scale data sets of protein–protein interactionsNature, 2002
- An efficient algorithm for large-scale detection of protein familiesNucleic Acids Research, 2002
- Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometryNature, 2002
- Functional organization of the yeast proteome by systematic analysis of protein complexesNature, 2002
- A comprehensive two-hybrid analysis to explore the yeast protein interactomeProceedings of the National Academy of Sciences, 2001
- On cluster validity for the fuzzy c-means modelIEEE Transactions on Fuzzy Systems, 1995