An alternative tandem affinity purification strategy applied to Arabidopsis protein complex isolation
Open Access
- 2 February 2005
- journal article
- Published by Wiley in The Plant Journal
- Vol. 41 (5) , 767-778
- https://doi.org/10.1111/j.1365-313x.2004.02328.x
Abstract
Summary: Tandem affinity purification (TAP) strategies constitute an efficient approach for protein complex purification from many different organisms. However, the application of such strategies for purifying endogenous Arabidopsis multi‐protein complexes has not yet been reported. Here, we describe an alternative TAP (TAPa) system that successfully allows protein complex purification from Arabidopsis. In our newly generated TAPa tag we have replaced the tobacco etch virus (TEV) protease cleavage site with the more specific and low‐temperature active rhinovirus 3C protease site. In addition, the second purification step can now be performed through two different affinity tags: a six His repeat or nine copies of a myc repeat. To examine our purification procedure we generated a C‐terminal fusion between the TAPa tag and CSN3, a component of the multi‐protein COP9 signalosome (CSN) complex. Subsequent analysis showed that CSN3‐TAPa could rescue a csn3 mutant, and that the components of the CSN complex could be co‐purified with CSN3‐TAPa. As part of our long running interest in light signaling in Arabidopsis we have generated Arabidopsis transgenic lines harboring, both N‐terminal and C‐terminal TAPa fusions of many different light signaling pathway regulators. Molecular characterization of these transgenic lines showed fusion expression in 88% of the genes analyzed and that this expression is largely independent of the fusion orientation. Mutant complementation analysis showed that most of the TAPa fusions analyzed retained function of the wild‐type proteins. Taken together, the data demonstrate the suitability of the TAPa system to allow efficient multi‐protein complex isolation from stably transformed Arabidopsis.Keywords
This publication has 46 references indexed in Scilit:
- Arabidopsis CAND1, an Unmodified CUL1-Interacting Protein, Is Involved in Multiple Developmental Pathways Controlled by Ubiquitin/Proteasome-Mediated Protein DegradationPlant Cell, 2004
- Improved tandem affinity purification tag and methods for isolation of protein heterocomplexes from plantsThe Plant Journal, 2004
- Genome-Wide Insertional Mutagenesis of Arabidopsis thalianaScience, 2003
- New partners of acyl carrier protein detected in Escherichia coli by tandem affinity purificationFEBS Letters, 2003
- The COP9 Signalosome Interacts with SCFUFO and Participates in Arabidopsis Flower DevelopmentPlant Cell, 2003
- Deciphering Protein Complexes and Protein Interaction Networks by Tandem Affinity Purification and Mass SpectrometryMolecular & Cellular Proteomics, 2002
- Functional organization of the yeast proteome by systematic analysis of protein complexesNature, 2002
- Molecular Characterization of Subunit 6 of the COP9 Signalosome and Its Role in Multifaceted Developmental Processes in ArabidopsisPlant Cell, 2001
- Arabidopsis Homologs of a c-Jun Coactivator Are Present Both in Monomeric Form and in the COP9 Complex, and Their Abundance Is Differentially Affected by the Pleiotropic cop/det/fus MutationsPlant Cell, 1998
- MASCOT: multiple alignment system for protein sequences based on three-way dynamic programmingBioinformatics, 1993