Optimization of Signal-to-Noise Ratio for Multilayer Pzt Transducers
- 1 April 1995
- journal article
- Published by SAGE Publications in Ultrasonic Imaging
- Vol. 17 (2) , 95-113
- https://doi.org/10.1177/016173469501700202
Abstract
In medical ultrasound imaging, two-dimensional (2-D) array transducers are desirable to implement dynamic focusing and phase aberration correction in two dimensions as well as volumetric imaging. Unfortunately, the small size of a 2-D array element results in a small clamped capacitance and a large electrical impedance near the resonance frequency. This results in poor signal-to-noise ratio (SNR) of the array elements. It has previously been demonstrated that transducers made from multilayer PZT ceramics have lower electrical impedance and greater SNR than comparable single layer elements. A simplified circuit model has been developed to optimize the SNR for multilayer ceramic (MLC) transducers. In this model, an electronic transmitter excites the array element and in the receive mode, the element drives a coaxial cable load terminated by a high impedance preamplifier. The transducer impedance is Zt/N2, where N is the number of piezoelectric layers. Maximum transmit signal is obtained when N = Ntx such that the transducer impedance, Zt/Ntx2, is matched to the source impedance. Maximum receive signal is obtained when N = Nrx such that the transducer impedance, Zt/Nrx2, is matched to the coaxial cable reactance. For maximum pulse-echo signal, the transducer should be designed with N = square root of Ntx Nrx, the geometric mean of Ntx and Nrx. Using this optimization technique, a 1.5-D array was designed with 3 layers for maximum pulse-echo SNR. Results of simulations from the simplified circuit analysis were consistent with those of the KLM model. The 3 layer array was fabricated as well as a single layer control array. The measured transmit signal and receive signal agreed with the simulation results.Keywords
This publication has 16 references indexed in Scilit:
- Multilayer piezoelectric ceramics for two-dimensional array transducersIEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1994
- In Vivo Imaging Using a Copolymer Phased ArrayUltrasonic Imaging, 1992
- Experimental results with a real-time adaptive ultrasonic imaging system for viewing through distorting mediaIEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1990
- Real-time volumetric ultrasound imaging systemPublished by SPIE-Intl Soc Optical Eng ,1990
- Simulation of piezoelectric devices by two- and three-dimensional finite elementsIEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1990
- A Low-Impedance Ultrasonic Probe Using a Multilayer Piezoelectric CeramicJapanese Journal of Applied Physics, 1989
- Phase-aberration correction using signals from point reflectors and diffuse scatterers: basic principlesIEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1988
- Optimization of acoustic receiver noise performanceThe Journal of the Acoustical Society of America, 1977
- Equivalent Circuits for Transducers Having Arbitrary Even- Or Odd-Symmetry Piezoelectric ExcitationIEEE Transactions on Sonics and Ultrasonics, 1971
- Underwater Electroacoustic MeasurementsPublished by Defense Technical Information Center (DTIC) ,1970