Inhibitor-κB kinase-β regulates LPS-induced TNF-α production in cardiac myocytes through modulation of NF-κB p65 subunit phosphorylation
Open Access
- 1 November 2005
- journal article
- Published by American Physiological Society in American Journal of Physiology-Heart and Circulatory Physiology
- Vol. 289 (5) , H2103-H2111
- https://doi.org/10.1152/ajpheart.00393.2005
Abstract
TNF-α is recognized as a significant contributor to myocardial dysfunction. Although several studies suggest that members of the NF-κB family of transcription factors are essential regulators of myocardial TNF-α gene expression, recent developments in our understanding of the modulation of NF-κB activity through posttranslational modification of NF-κB subunits suggest that the present view of NF-κB-dependent cytokine expression in heart is incomplete. Therefore, the goal of the present study was to examine the role of p65 subunit phosphorylation in the regulation of TNF-α production in cultured neonatal ventricular myocytes. Bacterial LPS-induced TNF-α production is accompanied by a 12-fold increase in phosphorylation of p65 at Ser536, a modification associated with enhancement of p65 transactivation potential. Pharmacological inhibition of IKK-β reduced LPS-induced TNF-α production 38-fold, TNF-α mRNA levels 6-fold, and IκB-α phosphorylation 5-fold and degraded IκB-α 2-fold and p65 phosphorylation 6-fold. Overexpression of dominant-negative p65 reduced TNF-α production 3.5-fold, whereas overexpression of dominant-negative IKK-β reduced LPS-induced TNF-α production 2-fold and p65 phosphorylation 2-fold. Overexpression of dominant-negative IKK-α had no effect on p65 phosphorylation or TNF-α production, revealing that IKK-β, not IKK-α, plays a central role in regulation of p65 phosphorylation at Ser536and TNF-α production in heart. Finally, we demonstrated, using a chromatin immunoprecipitation assay, that LPS stimulates recruitment of Ser536-phosphorylated p65 to the TNF-α gene promoter in cardiac myocytes. Taken together, these data provide compelling evidence for the role of NF-κB signaling in TNF-α gene expression in heart and highlight the importance of this proinflammatory gene-regulatory pathway as a potential therapeutic target in the management of cytokine-induced myocardial dysfunction.Keywords
This publication has 55 references indexed in Scilit:
- Attenuation of Murine Collagen-Induced Arthritis by a Novel, Potent, Selective Small Molecule Inhibitor of IκB Kinase 2, TPCA-1 (2-[(Aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide), Occurs via Reduction of Proinflammatory Cytokines and Antigen-Induced T Cell ProliferationThe Journal of Pharmacology and Experimental Therapeutics, 2005
- TNF‐α expression is transcriptionally regulated by RANK ligandJournal of Cellular Physiology, 2004
- Human T-cell Lymphotropic Virus Type 1 Tax Induction of Biologically Active NF-κB Requires IκB Kinase-1-mediated Phosphorylation of RelA/p65Journal of Biological Chemistry, 2004
- Phosphorylation of NF-κB by calmodulin-dependent kinase IV activates anti-apoptotic gene expressionBiochemical and Biophysical Research Communications, 2003
- Phosphorylation of serine 276 is essential for p65 NF- B subunit-dependent cellular responsesBiochemical and Biophysical Research Communications, 2003
- Akt Stimulates the Transactivation Potential of the RelA/p65 Subunit of NF-κB through Utilization of the IκB Kinase and Activation of the Mitogen-activated Protein Kinase p38Journal of Biological Chemistry, 2001
- Regulation of tumour necrosis factor α mRNA stability by the mitogen‐activated protein kinase p38 signalling cascadeFEBS Letters, 2000
- Phosphorylation of NF-κB p65 by PKA Stimulates Transcriptional Activity by Promoting a Novel Bivalent Interaction with the Coactivator CBP/p300Molecular Cell, 1998
- Hemorrhage Activates Myocardial NFκB and Increases TNF-α in the HeartJournal of Molecular and Cellular Cardiology, 1997
- Inhibition of NF-κB by Sodium Salicylate and AspirinScience, 1994