The transient outward current in mice lacking the potassium channel gene Kv1.4
- 1 May 1998
- journal article
- Published by Wiley in The Journal of Physiology
- Vol. 509 (1) , 171-182
- https://doi.org/10.1111/j.1469-7793.1998.171bo.x
Abstract
The transient outward current (Ito) plays a prominent role in the repolarization phase of the cardiac action potential. Several K+ channel genes, including Kv1.4, are expressed in the heart, produce rapidly inactivating currents when heterologously expressed, and may be the molecular basis of Ito.We engineered mice homozygous for a targeted disruption of the K+ channel gene Kv1.4 and compared Ito in wild-type (Kv1.4+/+), heterozygous (Kv1.4+/-) and homozygous ‘knockout’ (Kv1.4−/−) mice. Kv1.4 RNA was truncated in Kv1.4−/− mice and protein expression was absent.Adult myocytes isolated from Kv1.4+/+, Kv1.4+/− and Kv1.4−/− mice had large rapidly inactivating outward currents. The peak current densities at 60 mV (normalized by cellular capacitance, in pA pF−1; means ± s.e.m.) were 53.8 ± 5.3, 45.3 ± 2.2 and 44.4 ± 2.8 in cells from Kv1.4+/+, Kv1.4+/− and Kv1.4−/− mice, respectively (P < 0.02 for Kv1.4+/+ vs. Kv1.4−/−). The steady-state values (800 ms after the voltage clamp step) were 30.9 ± 2.9, 26.9 ± 3.8 and 23.5 ± 2.2, respectively (P < 0.02 for Kv1.4+/+ vs. Kv1.4−/−). The inactivating portion of the current was unchanged in the targeted mice.The voltage dependence and time course of inactivation were not changed by targeted disruption of Kv1.4. The mean best-fitting V½ (membrane potential at 50 % inactivation) values for myocytes from Kv1.4 +/+, Kv1.4+/− and Kv1.4−/− mice were -53.5 ± 3.7, -51.1 ± 2.6 and -54.2 ± 2.4 mV, respectively. The slope factors (k) were -10.1 ± 1.4, -8.8 ± 1.4 and -9.5 ± 1.2 mV, respectively. The fast time constants for development of inactivation at -30 mV were 27.8 ± 2.2, 26.2 ± 5.1 and 19.6 ± 2.1 ms in Kv1.4+/+, Kv1.4+/− and Kv1.4−/− myocytes, respectively. At +30 mV, they were 35.5 ± 2.6, 30.0 ± 2.1 and 28.7 ± 1.6 ms, respectively. The time constants for the rapid phase of recovery from inactivation at -80 mV were 32.5 ± 8.2, 23.3 ± 1.8 and 39.0 ± 3.7 ms, respectively.Nearly the entire inactivating component as well as more than 60 % of the steady-state outward current was eliminated by 1 mm 4-aminopyridine in Kv1.4+/+, Kv1.4+/− and Kv1.4−/− myocytes.Western blot analysis of heart membrane extracts showed no significant upregulation of the Kv4 subfamily of channels in the targeted mice.Thus, Kv1.4 is not the molecular basis of Ito in adult murine ventricular myocytes.Keywords
This publication has 41 references indexed in Scilit:
- Characterization of the Transcription Unit of Mouse Kv1.4, a Voltage-gated Potassium Channel GeneJournal of Biological Chemistry, 1996
- Genomic Organization, Nucleotide Sequence, Biophysical Properties, and Localization of the Voltage-Gated K+ Channel Gene KCNA4/Kv1.4 to Mouse Chromosome 2/Human 11p14 and Mapping of KCNC1/Kv3.1 to Mouse 7/Human 11p14.3-p15.2 and KCNA1/Kv1.1 to Human 12p13Genomics, 1994
- Shaker-related potassium channel, Kv1.4, mRNA regulation in cultured rat heart myocytes and differential expression of Kv1.4 and Kv1.5 genes in myocardial development and hypertrophy.Journal of Clinical Investigation, 1993
- A rapidly activating and slowly inactivating potassium channel cloned from human heart. Functional analysis after stable mammalian cell culture expression.The Journal of general physiology, 1993
- Specification of Subunit Assembly by the Hydrophilic Amino-Terminal Domain of the Shaker Potassium ChannelScience, 1992
- Subcellular segregation of two A-type K+ channel proteins in rat central neuronsNeuron, 1992
- Characterization of a mammalian cDNA for an inactivating voltage-sensitive K+ channelNeuron, 1991
- Developmental expression of cloned cardiac potassium channelsFEBS Letters, 1991
- Characterization of two distinct depolarization-activated K+ currents in isolated adult rat ventricular myocytes.The Journal of general physiology, 1991
- Molecular cloning and functional expression of a potassium channel cDNA isolated from a rat cardiac libraryFEBS Letters, 1990