STUDIES ON HYDROGEN–OXYGEN SYSTEMS IN THE ELECTRIC DISCHARGE: I. THE REACTIONS OF HYDROGEN ATOMS WITH HYDROGEN PEROXIDE

Abstract
Hydrogen gas partly dissociated in an electrodeless discharge was mixed downstream with hydrogen peroxide vapor at low pressure (0.1 mm Hg) in a liquid nitrogen trap. The reaction products condensed readily on the wall as a clear, yellowish glass resembling that from dissociated water vapor and other related systems. A manometric study of the warming-up process has revealed four distinct steps. The first two, in which only traces of gas are given off, look like the recombination of trapped free radicals. The major evolution of oxygen upon crystallization of the glassy deposit at 160 °K is ascribed to the decomposition of hydrogen peroxide under the influence of some unidentified species generated in the electric discharge through hydrogen. Experimental evidence for this is presented. In any case the stoichiometry cannot be reconciled with the formation of a metastable intermediate, such as the hypothetical polyoxide H2O4.In the last step beginning around 215 °K more peroxide is decomposed during the eutectic melting of the solid. Qualitatively these phenomena are similar to those shown by the condensate from dissociated water vapor.