The strength of B cell immunity in female rhesus macaques is controlled by CD8+T cells under the influence of ovarian steroid hormones
Open Access
- 28 April 2002
- journal article
- research article
- Published by Oxford University Press (OUP) in Clinical and Experimental Immunology
- Vol. 128 (1) , 10-20
- https://doi.org/10.1046/j.1365-2249.2002.01780.x
Abstract
To understand more clearly how mucosal and systemic immunity is regulated by ovarian steroid hormones during the menstrual cycle, we evaluated the frequency of immunoglobulin- and antibody-secreting cells (ISC, AbSC) in genital tract and systemic lymphoid tissues of normal cycling female rhesus macaques. The frequency of ISC and AbSC was significantly higher in tissues collected from animals in the periovulatory period of the menstrual cycle than in tissues collected from animals at other stages of the cycle. The observed changes were not due to changes in the relative frequency of lymphocyte subsets and B cells in tssues, as these did not change during the menstrual cycle. In vitro, progesterone had a dose-dependent inhibitory effect, and oestrogen had a dose-dependent stimulatory effect on the frequency of ISC in peripheral blood mononuclear cell (PBMC) cultures. The in vitro effect of progesterone and oestrogen on ISC frequency could not be produced by incubating enriched B cells alone with hormone, but required the presence of CD8+ T cells. Following oestrogen stimulation, a CD8+ enriched cell population expressed high levels of IFN-gamma and IL-12. The changes in B cell Ig secretory activity that we document in the tissues of female rhesus macaques during the menstrual cycle is due apparently to the action of ovarian steroid hormones on CD8+ T cells. Thus, CD8+ T cells control B cell secretory activity in both mucosal and systemic immune compartments. Understanding, and eventually manipulating, the CD8+ regulatory cell–B cell interactions in females may produce novel therapeutic approaches for autoimmune diseases and new vaccine strategies to prevent sexually transmitted diseases.Keywords
This publication has 48 references indexed in Scilit:
- Interaction of estrogen receptors α and β with estrogen response elementsMolecular and Cellular Endocrinology, 2001
- A Gender Gap in AutoimmunityScience, 1999
- HIV-1 Antigen–specific and –nonspecific B Cell Responses Are Sensitive to Combination Antiretroviral TherapyThe Journal of Experimental Medicine, 1998
- Sex Hormones as Negative Regulators of LymphopoiesisImmunological Reviews, 1994
- Production of natural killer cell stimulatory factor (interleukin 12) by peripheral blood mononuclear cells.The Journal of Experimental Medicine, 1992
- Oestrogen Receptors in MacrophagesScandinavian Journal of Immunology, 1990
- Sex hormone regulation of in vitro immune response. Estradiol enhances human B cell maturation via inhibition of suppressor T cells in pokeweed mitogen-stimulated cultures.The Journal of Experimental Medicine, 1981
- STUDIES OF THE REGULATORY EFFECTS OF THE SEX HORMONES ON ANTIBODY FORMATION AND STEM CELL DIFFERENTIATIONThe Journal of Experimental Medicine, 1972
- Influence of Sex on Immunoglobulin LevelsNature, 1967
- The distribution of serum immunoglobulins, anti‐γ‐G globulins (“rheumatoid factors”) and antinuclear antibodies in white and negro subjects in Evans County, GeorgiaArthritis & Rheumatism, 1967