Synthesis of a Pyridyl Disulfide End-Functionalized Glycopolymer for Conjugation to Biomolecules and Patterning on Gold Surfaces

Abstract
A pyridyl disulfide end-functionalized polymer with N-acetyl-d-glucosamine pendant side-chains was synthesized by atom transfer radical polymerization (ATRP). The glycopolymer was prepared from a pyridyl disulfide initiator catalyzed by a Cu(I)/Cu(II)/2,2′-bipyridine system in a mixture of methanol and water at 30 °C. The final polymer had a number-average molecular weight (Mn) of 13.0 kDa determined by 1H NMR spectroscopy and a narrow polydispersity index (1.12) determined by gel permeation chromatography (GPC). The pyridyl disulfide end-group was then utilized to conjugate the glycopolymer to a double-stranded short interfering RNA (siRNA). Characterization of the glycopolymer-siRNA by polyacrylamide gel electrophoresis (PAGE) showed 97% conjugation. The activated disulfide polymer was also patterned on gold via microcontact printing. The pyridyl disulfide allowed for ready immobilization of the glycopolymer into 200 μm sized features on the surface.