Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for Complex Mixture Analysis

Abstract
We have coupled atmospheric pressure photoionization (APPI) to a home-built 9.4-T Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Analysis of naphtho[2,3-a]pyrene and crude oil mass spectra reveals that protonated molecules, deprotonated molecules, and radical molecular ions are formed simultaneously in the ion source, thereby complicating the spectra (>12 000 peaks per mass spectrum and up to 63 peaks of the same nominal mass), and eliminating the “nitrogen rule” for nominal mass determination of number of nitrogens. Nevertheless, the ultrahigh mass resolving power and mass accuracy of FT-ICR MS enable definitive elemental composition assignments, even for doublets as closely spaced as 1.1 mDa (SH313C vs 12C4). APPI efficiently ionizes nonpolar compounds that are unobservable by electrospray and allows nonpolar sulfur speciation of petrochemical mixtures.