Monte Carlo simulation of electron beams from an accelerator head using PENELOPE
- 21 March 2001
- journal article
- Published by IOP Publishing in Physics in Medicine & Biology
- Vol. 46 (4) , 1163-1186
- https://doi.org/10.1088/0031-9155/46/4/318
Abstract
The Monte Carlo code PENELOPE has been used to simulate electron beams from a Siemens Mevatron KDS linac with nominal energies of 6, 12 and 18 MeV. Owing to its accuracy, which stems from that of the underlying physical interaction models, PENELOPE is suitable for simulating problems of interest to the medical physics community. It includes a geometry package that allows the definition of complex quadric geometries, such as those of irradiation instruments, in a straightforward manner. Dose distributions in water simulated with PENELOPE agree well with experimental measurements using a silicon detector and a monitoring ionization chamber. Insertion of a lead slab in the incident beam at the surface of the water phantom produces sharp variations in the dose distributions, which are correctly reproduced by the simulation code. Results from PENELOPE are also compared with those of equivalent simulations with the EGS4-based user codes BEAM and DOSXYZ. Angular and energy distributions of electrons and photons in the phase-space plane (at the downstream end of the applicator) obtained from both simulation codes are similar, although significant differences do appear in some cases. These differences, however, are shown to have a negligible effect on the calculated dose distributions. Various practical aspects of the simulations, such as the calculation of statistical uncertainties and the effect of the `latent' variance in the phase-space file, are discussed in detail.Keywords
This publication has 21 references indexed in Scilit:
- Electron beam modeling and commissioning for Monte Carlo treatment planningMedical Physics, 2000
- An MCNP-based model of a linear accelerator x-ray beamPhysics in Medicine & Biology, 1999
- Mean energy, energy‐range relationships and depth‐scaling factors for clinical electron beamsMedical Physics, 1996
- PENELOPE: An algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matterNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1995
- On the theory and simulation of multiple elastic scattering of electronsNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1993
- Monte Carlo techniques in medical radiation physicsPhysics in Medicine & Biology, 1991
- Presta: The parameter reduced electron-step transport algorithm for electron monte carlo transportNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1986
- A protocol for the determination of absorbed dose from high‐energy photon and electron beamsMedical Physics, 1983
- Multiple Scattering in an Infinite MediumPhysical Review B, 1950
- Multiple Scattering of ElectronsPhysical Review B, 1940