Photoconductivity nonlinearity at high excitation power in quantum well infrared photodetectors

Abstract
Nonlinear photoconductivity effects at high excitation power in quantum well infrared photodetectors (QWIPs) are studied both experimentally and theoretically. The photoconductivity nonlinearity is mainly caused by a redistribution of the electric potential at high power, which leads to a decrease of electric field in the bulk of the QWIP. As a result of the decreased field, the photoexcited electron escape probability and drift velocity decrease resulting in a decrease of responsivity.