Effects of mineral nutrients, sludge application rate, and application frequency on biodegradation of two oily sludges

Abstract
A continuous flow soil respirometer was used to evaluate the effect of nutrient addition, application rate, and application frequency on biodegradation of 2 complex oily sludges in soil. The most rapid biodegradation of the refinery sludge occurred when nitrogen was added to reduce the carbon to nitrogen (C∶N) ratio to 9∶1. The petrochemical sludge was degraded most rapidly when nitrogen, phosphorus, and potassium were added at a rate of 124∶1, C∶NPK; CO2evolution from both wastes increased with increasing application rates, but the fraction of applied sludge which degraded decreased with increasing application rates. Small frequent applications resulted in a slight increase in respiration rate per unit applied over a single equivalent application, indicating that repeated applications of smaller amounts of sludge result in a more rapid rate of decomposition. The population of total soil bacteria was greatest when 1% of either sludge was added to the soil, whereas 5 and 10% sludge additions resulted in slightly lower microbial populations.