Abstract
Calculations of stopping power ratios, water to air, for the determination of absorbed dose to water in clinical proton beams using ionization chamber measurements have been undertaken using the Monte Carlo method. A computer code to simulate the transport of protons in water (PETRA) has been used to calculate sw.air-data under different degrees of complexity, ranging from values based on primary protons only to data including secondary electrons and high-energy secondary protons produced in nonelastic nuclear collisions. All numerical data are based on ICRU 49 proton stopping powers. Calculations using primary protons have been compared to the simple continuous slowing-down approximation (c.s.d.a.) analytical technique used in proton dosimetry protocols, not finding significant differences that justify elaborate Monte Carlo simulations except beyond the mean range of the protons (the far side of the Bragg peak). The influence of nuclear nonelastic processes, through the detailed generation and transport of secondary protons, on the calculated stopping-power ratios has been found to be negligible. The effect of alpha particles has also been analysed, finding differences smaller than 0.1% from the results excluding them. Discrepancies of up to 0.6% in the plateau region have been found, however, when the production and transport of secondary electrons are taken into account. The large influence of nonelastic nuclear interactions on proton depth-dose distributions shows that the removal of primary protons from the incident beam decreases the peak-to-plateau ratio by a large factor, up to 40% at 250 MeV. It is therefore emphasized that nonelastic nuclear reactions should be included in Monte Carlo simulations of proton beam depth-dose distributions.