A numerical study of vortex ring formation at the edge of a circular tube

Abstract
An axisymmetric vortex-sheet model is applied to simulate an experiment of Didden (1979) in which a moving piston forces fluid from a circular tube, leading to the formation of a vortex ring. Comparison between simulation and experiment indicates that the model captures the basic features of the ring formation process. The computed results support the experimental finding that the ring trajectory and the circulation shedding rate do not behave as predicted by similarity theory for starting flow past a sharp edge. The factors responsible for the discrepancy between theory and observation are discussed.

This publication has 17 references indexed in Scilit: