Hippocampal spatial representations require vestibular input
Top Cited Papers
- 1 January 2002
- journal article
- research article
- Published by Wiley in Hippocampus
- Vol. 12 (3) , 291-303
- https://doi.org/10.1002/hipo.1112
Abstract
The hippocampal formation is essential for forming declarative representations of the relationships among multiple stimuli. The rodent hippocampal formation, including the entorhinal cortex and subicular complex, is critical for spatial memory. Two classes of hippocampal neurons fire in relation to spatial features. Place cells collectively map spatial locations, with each cell firing only when the animal occupies that cell's “place field,” a particular subregion of the larger environment. Head direction (HD) cells encode directional heading, with each HD cell firing when the rat's head is oriented in that cell's particular “preferred firing direction.” Both landmarks and internal cues (e.g., vestibular, motor efference copy) influence place and HD cell activity. However, as is the case for navigation, landmarks are believed to exert greater influence over place and HD cell activity. Here we show that temporary inactivation of the vestibular system led to the disruption of location‐specific firing in hippocampal place cells and direction‐specific discharge of postsubicular HD cells, without altering motor function. Place and HD cell activity recovered over a time course similar to that of the restoration of vestibular function. These results indicate that vestibular signals provide an important influence over the expression of hippocampal spatial representations, and may explain the navigational deficits of humans with vestibular dysfunction. Hippocampus 2002;12:291–303.Keywords
This publication has 85 references indexed in Scilit:
- Visual and vestibular influences on head-direction cells in the anterior thalamus of the rat.Behavioral Neuroscience, 1996
- Enhanced hippocampal theta EEG during whole body rotations in awake restrained ratsNeuroscience Letters, 1995
- Preferential use of the landmark navigational system by head direction cells in rats.Behavioral Neuroscience, 1995
- On the role of the hippocampus in learning and memory in the ratBehavioral and Neural Biology, 1993
- Spatial learning in an enclosed eight-arm radial maze in rats with sodium arsanilate-induced labyrinthectomiesBehavioral and Neural Biology, 1993
- Experience‐dependent modifications of hippocampal place cell firingHippocampus, 1991
- Rapid changes in cochlear nucleus cell size following blockade of auditory nerve electrical activity in gerbilsJournal of Comparative Neurology, 1989
- Short-distance homing in a small mammal: the role of exteroceptive cues and path integrationCellular and Molecular Life Sciences, 1985
- Spatial knowledge in a young blind childCognition, 1984
- Hippocampal EEG in normal mice and in mice with congenital vestibular defectsBehavioral and Neural Biology, 1982