Cylindrical Ion Trap Array with Mass Selection by Variation in Trap Dimensions

Abstract
A mass spectrometer array is described in which each array element is a cylindrical ion trap (CIT) within which an approximately quadrupolar, time-varying, field is established. The individual traps are of different sizes, so that when the array is operated with a fixed rf potential, ions of different masses (or mass ranges) are stored in each trap. By choosing the dimensions of each CIT element in the array, a multiple ion monitoring experiment can be performed. For example, in a two-element array with elements having internal radii of 5 and 4 mm, the smaller trap selects for m/z 91 and the larger for m/z 57, corresponding to characteristic aromatic and aliphatic hydrocarbon ions. Ion storage using both rf/dc (apex) isolation and the stored waveform inverse Fourier transform method is demonstrated.The array reduces the complexity of the electronics needed to operate the ion trap, which should make it suitable for use in a miniature mass spectrometer system.
Keywords

This publication has 49 references indexed in Scilit: