Ruelle's transfer operator for random subshifts of finite type

Abstract
We consider a Ruelle—Perron—Frobenius type of selection procedure for probability measures that are invariant under random subshifts of finite type. In particular we prove that for a class of random functions this method leads to a unique probability exhibiting properties that justify the names Gibbs measure and equilibrium states. In order to do this we introduce the notion of bundle random dynamical systems and provide a theory for their invariant measures as well as give a precise definition of Gibbs measures.

This publication has 4 references indexed in Scilit: