Conservation between human and fungal squalene synthetases: similarities in structure, function, and regulation.
Open Access
- 1 May 1993
- journal article
- research article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 13 (5) , 2706-2717
- https://doi.org/10.1128/mcb.13.5.2706
Abstract
Squalene synthetase (farnesyl diphosphate:farnesyl diphosphate farnesyltransferase; EC 2.5.1.21) is thought to represent a major control point of isoprene and sterol biosynthesis in eukaryotes. We demonstrate structural and functional conservation between the enzymes from humans, a budding yeast (Saccharomyces cerevisiae), and a fission yeast (Schizosaccharomyces pombe). The amino acid sequences of the human and S. pombe proteins deduced from cloned cDNAs were compared to those of the known S. cerevisiae protein. All are predicted to encode C-terminal membrane-spanning proteins of approximately 50 kDa with similar hydropathy profiles. Extensive sequence conservation exists in regions of the enzyme proposed to interact with its prenyl substrates (i.e., two farnesyl diphosphate molecules). Many of the highly conserved regions are also present in phytoene and prephytoene diphosphate synthetases, enzymes which catalyze prenyl substrate condensation reactions analogous to that of squalene synthetase. Expression of cDNA clones encoding S. pombe or hybrid human-S. cerevisiae squalene synthetases reversed the ergosterol requirement of S. cerevisiae cells bearing ERG9 gene disruptions, showing that these enzymes can functionally replace the S. cerevisiae enzyme. Inhibition of sterol synthesis in S. cerevisiae and S. pombe cells or in cultured human fibroblasts by treatment with the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor lovastatin resulted in elevated levels of squalene synthetase mRNA in all three cell types.Keywords
This publication has 38 references indexed in Scilit:
- [27] Preparation of high molecular weight RNAPublished by Elsevier ,1991
- Conserved enzymes mediate the early reactions of carotenoid biosynthesis in nonphotosynthetic and photosynthetic prokaryotes.Proceedings of the National Academy of Sciences, 1990
- Regulation of the mevalonate pathwayNature, 1990
- Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzymeJournal of Biological Chemistry, 1989
- Regulation of early enzymes of ergosterol biosynthesis in Saccharomyces cerevisiaeBiochemical Journal, 1986
- Phosphate‐binding sequences in nucleotide‐binding proteinsFEBS Letters, 1985
- Saccharomyces cerevisiae RAD2 gene: isolation, subcloning, and partial characterization.Molecular and Cellular Biology, 1984
- A simple method for displaying the hydropathic character of a proteinJournal of Molecular Biology, 1982
- Biosynthesis of Prelycopersene Pyrophosphate and Lycopersene by Squalene SynthetaseJournal of Biological Chemistry, 1973
- Occurrence of dehydrosqualene (C30 phytoene) in Staphylococcus aureusBiochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1968